PRIME‐SH: A Data‐Driven Probabilistic Model of Earth's Magnetosheath

Author:

O’Brien C.1ORCID,Walsh B. M.12ORCID,Zou Y.3ORCID,Qudsi R.1,Tasnim S.4,Zhang H.5ORCID,Sibeck D. G.6ORCID

Affiliation:

1. Center for Space Physics Boston University Boston MA USA

2. Department of Mechanical Engineering Boston University Boston MA USA

3. Johns Hopkins University Applied Physics Lab Laurel MD USA

4. Institute for Solar‐Terrestrial Physics German Aerospace Center (DLR) Neustrelitz Germany

5. Computer Science Department University of Alabama in Huntsville Huntsville AL USA

6. Heliophysics Science Division NASA/GSFC Greenbelt MD USA

Abstract

AbstractA data‐driven model of Earth's magnetosheath is developed by training a recurrent neural network (RNN) with probabilistic outputs to reproduce Magnetospheric MultiScale (MMS) measurements of the magnetosheath plasma and magnetic field using measurements from the Wind spacecraft upstream of Earth at the first Earth‐Sun Lagrange point (L1). This model, called Probabilistic Regressor for Input to the Magnetosphere Estimation‐magnetosheath (PRIME‐SH) in reference to its progenitor algorithm PRIME, is shown to predict spacecraft observations of magnetosheath conditions accurately in a statistical sense with a continuous rank probability score of 0.227σ (dimensionless standard deviation units). PRIME‐SH is shown to be more accurate than many current analytical models of the magnetosheath. Furthermore, PRIME‐SH is shown to reproduce physics not explicitly enforced during training, such as field line draping, the dayside plasma depletion layer, the magnetosheath flow stagnation point, and the Rankine‐Hugoniot MHD shock jump conditions. PRIME‐SH has the additional benefits of being computationally inexpensive relative to global MHD simulations, being capable of reproducing difficult‐to‐model physics such as temperature anisotropy, and being capable of reliably estimating its own uncertainty to within 3.5%.

Publisher

American Geophysical Union (AGU)

Reference87 articles.

1. MMS SITL Ground Loop: Automating the Burst Data Selection Process

2. Layer normalization;Ba J. L.;arXiv,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3