Empowering Machine Learning Forecasting of Labquake Using Event‐Based Features and Clustering Characteristics

Author:

Karimpouli Sadegh1ORCID,Kwiatek Grzegorz1ORCID,Ben‐Zion Yehuda2ORCID,Martínez‐Garzón Patricia1ORCID,Dresen Georg13ORCID,Bohnhoff Marco14ORCID

Affiliation:

1. Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany

2. Department of Earth Sciences Statewide California Earthquake Center University of Southern California Los Angeles CA USA

3. Institute of Earth and Environmental Sciences Universität Potsdam Potsdam Germany

4. Department of Earth Sciences Free University Berlin Berlin Germany

Abstract

AbstractFollowing recent advances of machine learning (ML), we present a novel approach to extract spatiotemporal seismo‐mechanical features from Acoustic Emission (AE) catalogs to empower ML‐based forecasting. The AE data were recorded during laboratory stick‐slip experiments on granite samples cut by rough faults. Based on the features computed for a past time window, a random forest (RF) classifier is used to forecast the occurrence of a large magnitude event (MAE > 3.5) in the next time window. Event‐based features allow us to associate informative time‐space characteristics to each feature and nearest‐neighbor clustering analysis enables us to separate background and clustered seismicity and train individual models. The results show that the separation of AEs enhances the forecasting accuracy from 73.2% for the entire catalog up to 82.1% and 89.0% if background and clustered events are used separately. The presented new approach may be upscaled for applications to forecast tectonic earthquakes.

Funder

HORIZON EUROPE European Research Council

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3