Fracture Characterization Via AI‐Assisted Analysis of Temperature Logs

Author:

Yang Xiaoyu1ORCID,Horne Roland N.1,Tartakovsky Daniel M.1ORCID

Affiliation:

1. Department of Energy Science and Engineering Stanford University Stanford CA USA

Abstract

AbstractFractures control fluid flow, mass transport, and heat transfer in a geothermal reservoir. This makes accurate characterization of fracture networks a prerequisite for optimal design and control of a reservoir's exploitation. We develop a deep‐learning procedure to identify fracture locations via interpretation of temporally and spatially continuous downhole temperature measurements. A long short‐term memory fully convolutional network (LSTM‐FCN) is used both to capture long‐term dependencies in sequential temperature data and to distill local features around fractures. A wellbore and fractured‐reservoir thermal model is established to generate temperature data for network training. The trained LSTM‐FCN exhibits a unique ability to detect multiple fractures intersecting a borehole. We use the LSTM‐FCN algorithm to evaluate the effectiveness of different‐stage wellbore temperature measurements on fracture detection in a complex fractured system. Our experiments reveal that the use of various‐stage temperature information as an input feature set improves the robustness of fracture detection to noise interference. This study indicates the practical feasibility of obtaining accurate fracture‐network reconstructions from temperature signals, at reasonable computational cost.

Funder

Stanford University

Office of Energy Efficiency and Renewable Energy

Los Alamos National Laboratory

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3