Machine Learning‐Assisted Microearthquake Location Workflow for Monitoring the Newberry Enhanced Geothermal System

Author:

Leong Zi Xian12ORCID,Zhu Tieyuan13ORCID

Affiliation:

1. Department of Geosciences The Pennsylvania State University University Park PA USA

2. Now at Chevron Technical Center A Division of Chevron U.S.A. Inc. San Ramon CA USA

3. EMS Energy Institute The Pennsylvania State University University Park PA USA

Abstract

AbstractEnhanced geothermal systems (EGS) offer a sustainable energy source but face challenges in accurately locating microearthquakes induced during reservoir stimulation. Locating these microearthquakes provides reliable feedback on the stimulation progress. Current deep learning methods for locating earthquakes require extensive data sets for training, which is problematic as detected microearthquakes are often limited. To address the scarcity of training data, we propose a practical workflow using probabilistic multilayer perceptron (PMLP) which predicts microearthquake locations from cross‐correlation time lags in waveforms. Utilizing a 3D velocity model of Newberry site derived from ambient noise interferometry, we generate numerous synthetic microearthquakes and 3D acoustic waveforms for PMLP training. Accurate synthetic tests prompt us to apply the trained network to the 2012 and 2014 stimulation field waveforms. To enhance the accuracy of source localization, we carefully handpick the P‐arrival times. Predictions on the 2012 stimulation data set show major microseismic activity at depths of 0.5–1.2 km, correlating with a known casing leakage scenario. In the 2014 data set, the majority of predictions concentrate at 2.0–2.9 km depths, consistent with results obtained from conventional physics‐based inversion, and align with the presence of natural fractures from 2.0 to 2.7 km. We validate our findings by comparing the synthetic and field picks, demonstrating a satisfactory match for the first arrivals. By combining the benefits of quick inference speeds and accurate location predictions, we demonstrate the feasibility of using realistic synthetic data set to locate microseismicity for EGS monitoring.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Reference63 articles.

1. MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning

2. AltaRock. (2014).Phase 2.1 report Newberry EGS demonstration. Retrieved fromhttps://gdr.openei.org/files/774/Phase%202.1%20Report_4.24.14.pdf

3. 3-D elastic prestack, reverse‐time depth migration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3