Augmented Four‐Dimensional Mesosphere and Lower Thermosphere Wind Field Reconstruction via the Physics‐Informed Machine Learning Approach HYPER

Author:

Urco Juan M.1ORCID,Feraco Fabio12,Chau Jorge L.1ORCID,Marino Raffaele2ORCID

Affiliation:

1. Leibniz‐Institute of Atmospheric Physics at the University of Rostock Kühlungsborn Germany

2. Laboratoire de Mécanique des Fluides et d’Acoustique—UMR 5509 École Centrale de Lyon CNRS INSA Lyon Université Claude Bernard Lyon 1 Ecully France

Abstract

AbstractThe mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the interplay of gravity waves and turbulent motions. A thorough comprehension of this atmospheric region requires substantial observational infrastructure, needed to resolve and disentangle its complex dynamics. State‐of‐the‐art observational methods struggle to accurately capture mesoscale dynamics due to the inherent difficulty to perform observations at MLT altitudes. A majority of the observational methods rely on assumptions such as homogeneity, smoothness of the prognostic fields, or zero vertical wind velocities, which may not hold in the upper atmosphere at the mesoscales. In this study, we introduce a novel machine learning‐based approach HYPER (HYdrodynamic Point‐wise Environment Reconstructor), designed to characterize MLT dynamics. HYPER utilizes a physics‐informed neural network to project sparse Doppler meteor detections into four‐dimensional time‐series arrays containing the Cartesian components of the velocity field. This method combines meteor radar observations with the physics prescribed by the Navier‐Stokes equations. The validation of HYPER was conducted through a series of benchmarks on numerical data and the application of our algorithm on actual meteor radar observations, all of which yielded realistic approximations of the reconstructed physical fields. This innovative approach represents a significant step toward an accurate characterization of the MLT dynamics, overcoming the limitations of existing methods, and providing valuable insights into the behavior of this poorly accessible region of the atmosphere.

Funder

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3