Application of the AI2 Climate Emulator to E3SMv2's Global Atmosphere Model, With a Focus on Precipitation Fidelity

Author:

Duncan James P. C.1ORCID,Wu Elynn2,Golaz Jean‐Christophe3ORCID,Caldwell Peter M.3ORCID,Watt‐Meyer Oliver2ORCID,Clark Spencer K.24ORCID,McGibbon Jeremy2,Dresdner Gideon2,Kashinath Karthik5,Bonev Boris5ORCID,Pritchard Michael S.5ORCID,Bretherton Christopher S.2ORCID

Affiliation:

1. University of California Berkeley CA USA

2. Allen Institute for Artificial Intelligence (AI2) Seattle WA USA

3. Lawrence Livermore National Laboratory Livermore CA USA

4. Geophysical Fluid Dynamics Laboratory NOAA Princeton NJ USA

5. NVIDIA Santa Clara CA USA

Abstract

AbstractCan the current successes of global machine learning‐based weather simulators be generalized beyond 2‐week forecasts to stable and accurate multiyear runs? The recently developed AI2 Climate Emulator (ACE) suggests this is feasible, based upon 10‐year simulations with a network trained on output from a physics‐based global atmosphere model using a grid spacing of approximately 110 km and forced by a repeating annual cycle of sea‐surface temperature. Here we show that ACE, without modification, can be trained to emulate another major atmospheric model, EAMv2, run at a comparable grid spacing for at least 10 years with similarly small climate biases—a prerequisite to wider applicability. With an analysis that combines multiple temporal, spatial, and frequency domain perspectives, we show that ACE faithfully represents the spatiotemporal structure of EAMv2 precipitation and related variables. Finally, we show that a pretrained ACE network is able to adapt to a new global climate model simulation data set with 10 fewer training steps than when starting from random initialization, all while still maintaining low levels of climate bias. Further analysis of these fine‐tuning experiments reveal ACE's intriguing ability to interpolate between distinct global climate models.

Funder

Laboratory Directed Research and Development

National Energy Research Scientific Computing Center

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3