Numerical Investigation of the Influence of Hydrodynamic Dispersion on Solutal Natural Convection

Author:

Tsinober Avihai1,Shavit Uri1ORCID,Rosenzweig Ravid2ORCID

Affiliation:

1. Civil and Environmental Engineering Technion Israel

2. Geological Survey of Israel Jerusalem Israel

Abstract

AbstractWe investigate numerically the effect of hydrodynamic dispersion on convective dissolution of carbon dioxide in saline aquifers. Solutions of the transport equations were used to describe the dissolution process in the aquifer and provide a systematic parametric analysis of the influence of dispersion on two important measures of convective dissolution, the wavenumber, and dissolution flux. The results suggest that dispersion decreases the dissolution rate and reduces the finger wavenumber. Based on the simulated results, new empirical scaling laws that predict the dissolution rate and wavenumber were developed. The application of the new laws to two storage sites shows that the currently available predictions overestimate the dissolution rates by ∼30%. We have identified some discrepancies between published scaling laws that were obtained for the dissolution rate. While most numerical studies identify a linear scaling, experimental investigations often suggest a sublinear behavior. Our findings resolve the controversy by suggesting that dispersion, which was not considered in these past numerical studies, is the reason for the apparent sublinear scaling.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3