Affiliation:
1. Civil and Environmental Engineering Technion Israel
2. Geological Survey of Israel Jerusalem Israel
Abstract
AbstractWe investigate numerically the effect of hydrodynamic dispersion on convective dissolution of carbon dioxide in saline aquifers. Solutions of the transport equations were used to describe the dissolution process in the aquifer and provide a systematic parametric analysis of the influence of dispersion on two important measures of convective dissolution, the wavenumber, and dissolution flux. The results suggest that dispersion decreases the dissolution rate and reduces the finger wavenumber. Based on the simulated results, new empirical scaling laws that predict the dissolution rate and wavenumber were developed. The application of the new laws to two storage sites shows that the currently available predictions overestimate the dissolution rates by ∼30%. We have identified some discrepancies between published scaling laws that were obtained for the dissolution rate. While most numerical studies identify a linear scaling, experimental investigations often suggest a sublinear behavior. Our findings resolve the controversy by suggesting that dispersion, which was not considered in these past numerical studies, is the reason for the apparent sublinear scaling.
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献