Affiliation:
1. School of Engineering University of Warwick Coventry UK
2. School of Life Sciences University of Warwick Coventry UK
Abstract
AbstractPhysical interactions of microplastics within vegetation and turbulent flows of freshwater systems are poorly understood. An experimental study was conducted to investigate the underlying physical transport mechanisms of microplastics over submerged canopies across a range of flow conditions common in the natural environment. The effects of changing canopy heights were investigated by testing two model canopies of varying stem heights, simulating seasonal variation. This study determined and compared the mixing and dispersion processes for microplastics and solutes utilizing fluorometric tracing techniques. A hydrodynamic model was developed based on the advection‐dispersion equation for quantifying microplastic mixing in submerged canopies. Longitudinal dispersion coefficients for neutrally buoyant microplastics (polyethylene) and solutes were significantly correlated within submerged model vegetation irrespective of the complexity of the flow regime. Hydrodynamic and solute transport models were shown to be capable of robust predictions of mixing for neutrally buoyant microplastics in environmental flows over a canopy, facilitating a new approach to quantify microplastic transport and fate. We compare the mixing processes for microplastics and solutes then propose a hydrodynamic model for quantifying the mixing in submerged canopies.
Funder
Natural Environment Research Council
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献