Effects of Sea Ice on Arctic Delta Evolution: A Modeling Study of the Colville River Delta, Alaska

Author:

Cooper Caroline1ORCID,Eidam Emily12ORCID,Seim Harvey1,Nienhuis Jaap3ORCID

Affiliation:

1. Department of Earth, Marine, and Environmental Science University of North Carolina at Chapel Hill Chapel Hill NC USA

2. College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA

3. Physical Geography Utrecht University Utrecht The Netherlands

Abstract

AbstractSeasonal sea ice impacts Arctic delta morphology by limiting wave and river influences and altering river‐to‐ocean sediment pathways. However, the long‐term effects of sea ice on delta morphology remain poorly known. To address this gap, 1D morphologic and hydrodynamic simulations were set up in Delft3D to study the 1500‐year development of Arctic deltas during the most energetic Arctic seasons: spring break‐up/freshet, summer open‐water, and autumn freeze‐up. The model focused on the deltaic clinoform (i.e., the vertical cross‐sectional view of a delta) and used a floating barge structure to mimic the effects of sea ice on nearshore waters. From the simulations we find that ice‐affected deltas form a compound clinoform morphology, that is, a coupled subaerial and subaqueous delta separated by a subaqueous platform that resembles the shallow platform observed offshore of Arctic deltas. Nearshore sea ice affects river dynamics and promotes sediment bypassing during sea ice break‐up, forming an offshore depocenter and building a subaqueous platform. A second depocenter forms closer to shore during the open‐water season at the subaerial foreset that aids in outbuilding the subaerial delta and assists in developing the compound clinoform morphology. Simulations of increased wave activity and reduced sea‐ice, likely futures under a warming Arctic climate, show that deltas may lose their shallow platform on centennial timescales by (a) sediment infill and/or (b) wave erosion. This study highlights the importance of sea ice on Arctic delta morphology and the potential morphologic transitions these high‐latitude deltas may experience as the Arctic continues to warm.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3