Affiliation:
1. Permafrost Research Section Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Potsdam Germany
2. Department of Electrical Engineering and Computer Science Technical University of Berlin Berlin Germany
3. Department of Geosciences University of Oslo Oslo Norway
4. Department of Geography Humboldt Universität zu Berlin Berlin Germany
Abstract
AbstractPermafrost warming has been observed all around the Arctic, however, variations in temperature trends and their drivers remain poorly understood. We present a comprehensive analysis of climatic changes spanning 25 years (1998–2023) at Bayelva (78.92094°N, 11.83333°E) on Spitzbergen, Svalbard. The quality controlled hourly data set includes air temperature, radiation fluxes, snow depth, rainfall, active layer temperature and moisture, and, since 2009, permafrost temperature. Our Bayesian trend analysis reveals an annual air temperature increase of 0.9 ± 0.5°C/decade and strongest warming in September and October. We observed a significant shortening of the snow cover by −14 ± 8 days/decade, coupled with reduced winter snow depth. The active layer simultaneously warmed by 0.6 ± 0.7°C/decade at the top and 0.8 ± 0.5°C/decade at the bottom. While the soil surface got drier, in particular during summer, soil moisture below increased in accordance with the longer unfrozen period and higher winter temperatures. The thawed period prolonged by 10–15 days/decade at different depths. In contrast to earlier top‐soil warming, we observed stable temperatures since 2010 and only little permafrost warming (0.14 ± 0.13°C/decade). This is likely due to recently stable winter air temperature and continuously decreasing winter snow depth. This recent development highlights a complex interplay among climate and soil variables. Our distinctive long‐term data set underscores (a) the changes in seasonal warming patterns, (b) the influential role of snow cover decline, and (c) that air temperature alone is not a sufficient indicator of change in permafrost environments, thereby highlighting the importance of investigating a wider range of parameters, such as soil moisture and snow characteristics.
Publisher
American Geophysical Union (AGU)
Reference73 articles.
1. AMAP. (2017).Snow Water Ice and Permafrost in the Arctic (SWIPA) 2017. Retrieved fromhttps://www.amap.no/documents/download/2987/inline
2. Ground temperature changes on the Kaffiøyra Plain (Spitsbergen) in the summer seasons, 1975–2014
3. Towards a rain-dominated Arctic