Rates of Evacuation of Bedload Sediment From an Alpine Glacier Control Proglacial Stream Morphodynamics

Author:

Mancini D.1ORCID,Roncoroni M.2ORCID,Dietze M.34ORCID,Jenkin M.1ORCID,Müller T.1ORCID,Ouvry B.5,Miesen F.1ORCID,Pythoud Q.1,Hofmann M.1,Lardet F.1,Nicholas A. P.6,Lane S. N.1ORCID

Affiliation:

1. Institute of Earth Surface Dynamics (IDYST) Université de Lausanne Lausanne Switzerland

2. Institut National de la Recherche Scientifique (INRS) Québec City QC Canada

3. Intitute of Geography Georg‐August‐University Göttingen Göttingen Germany

4. German Research Center for Geosciences (GFZ) Potsdam Germany

5. Glaciology and Geomorphodynamics Department of Glaciology University of Zürich Zürich Switzerland

6. Geography Faculty of Environment Science and Economy University of Exeter Exeter UK

Abstract

AbstractProglacial forefields commonly include highly dynamic fluvial systems associated with the fundamental instability between topography, flow hydraulics and sediment transport. However, there is limited knowledge of how these systems respond to changing subglacial hydrology and sediment supply. We investigated this relationship using the first continuous field‐collected data sets for both suspended and bedload sediment export and proglacial river dynamics for an Alpine glacier forefield, the Glacier d’Otemma, Switzerland. The results show a strong sensitivity of fluvial morphodynamics to the balance between sediment transport capacity and supply. When subglacial bedload export rates exceeded fluvial transport capacity, we found bar construction leading to net forefield aggradation and surficial coarsening, especially on bar heads. This intensified braiding buffered the downstream transport of coarse sediment. When subglacial bedload export rates were lower than transport capacity, incision occurred, with reduced braiding intensity, net erosion and important amounts of bedload leaving the proglacial system. We found a net fining of surficial deposits except for very isolated coarsening patterns on bar heads. Thus, proglacial forefield morphodynamics are strongly conditioned by subglacial hydrology and sediment supply, but this conditioning is also influenced by the response of the forefield itself. Proglacial forefields have an important influence on the longitudinal connectivity of sediment flux in regions sensitive to climate change, such as recently deglaciated high mountain areas. The linkages we report between subglacial processes and river morphodynamics are critical for understanding the development of embryonic forefield ecosystems.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3