PlanetMag: Software for Evaluation of Outer Planet Magnetic Fields and Corresponding Excitations at Their Moons

Author:

Styczinski M. J.1ORCID,Cochrane C. J.2ORCID

Affiliation:

1. Blue Marble Space Institute of Science Seattle WA USA

2. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractSpacecraft magnetic field measurements are able to tell us much about the planets' interior dynamics, composition, and evolutionary timeline. Magnetic fields also serve as the source for passive magnetic sounding of moons. Time‐varying magnetic fields experienced by the moons, due to relative planetary motion, interact electrically with conductive layers within these bodies (including salty subsurface oceans) to produce induced magnetic fields that are measurable by nearby, magnetometer‐equipped spacecraft. Many factors influence the character of the induced field, including the precise amplitude and phase of the time‐varying field, known as the excitation or driving field and represented by excitation moments. In this work, we present an open‐source Matlab software package named PlanetMag that features calculation of planetary magnetic field models available in the literature at arbitrary positions and times. The implemented models enable simultaneous inversion of the excitation moments across a range of oscillation frequencies using linear least‐squares methods and ephemeris data with the SPICE toolkit. Here we summarize the available magnetic field models and their associated coordinate systems. Precisely determined excitation moments are a critical input to forward models of global induced fields. Our results serve as a prerequisite to any precise comparison to spacecraft data for magnetic sounding investigation of giant planet moons—connecting the induced magnetic field to a moon's interior requires accurate representation of the oscillating excitation field. We calculate complex excitation moments relative to the J2000 epoch and share the results as ASCII tables compatible with related software packages intended for induction response calculations.

Funder

National Aeronautics and Space Administration Postdoctoral Program

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3