Ground‐Based Far Infrared Emissivity Measurements Using the Absolute Radiance Interferometer

Author:

Loveless M.1ORCID,Adler D.1,Best F.1,Borbas E.1,Huang X.2ORCID,Knuteson R.1ORCID,L'Ecuyer T.3ORCID,Nalli N. R.4,Olsen E.1,Revercomb H.1,Taylor J. K.1ORCID

Affiliation:

1. Space Science and Engineering Center University of Wisconsin‐Madison Madison WI USA

2. Department of Climate and Space Sciences and Engineering University of Michigan Madison WI USA

3. Cooperative Institute for Meteorological Satellite Studies University of Wisconsin‐Madison Madison WI USA

4. IMSG, Inc. at NOAA/NESDIS Center for Satellite Applications and Research (STAR) Rockville MD USA

Abstract

AbstractFar infrared (FIR) emission from the Earth's polar regions has become an area of increasing scientific interest and value. FIR emission is important for understanding Earth's radiative balance and improving global climate models, especially in rapidly changing Arctic conditions. Far‐infrared emission from Earth is not currently being monitored from space, except as part of broadband emission channels of Earth radiation budget measurements like those from the CERES project, and only limited measurements in the FIR spectrum exist. The Absolute Radiance Interferometer (ARI), developed as a prototype of the infrared spectrometer for CLARREO at the University of Wisconsin‐Madison, Space Science and Engineering Center, measures absolute spectrally resolved infrared (IR) radiance from 200 to 2,000 cm−1 (or 5–50 μm) at 0.5 cm−1 resolution with high accuracy (<0.1 K 3‐sigma brightness temperature at scene temperature). This instrument was taken into the field in Madison, Wisconsin, USA, during the winters of 2021 and 2022, where the weather can reach polar‐like conditions to measure high spectral resolution radiances of various sample types. Sample materials included water, snow, ice, evergreen leaves, dry grass, and sand, all characteristic of high latitude regions. Radiances collected from both a sky view and the sample view in clear‐sky conditions were used to retrieve FIR emissivity. This paper describes the ARI instrument configuration and capability for ground‐based measurements in the FIR region, and documents retrieved emissivities of various analyzed samples. The retrieved emissivity results are publicly available, and comparisons are made to simulated emissivity estimates.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3