Mapping Lava Flows on Venus Using SAR and InSAR: Hawaiʻi Case Study

Author:

Brandin M. C.1ORCID,Sandwell D. T.1ORCID,Johnson C. L.23ORCID,Russell M. B.2ORCID

Affiliation:

1. Institute for Geophysics & Planetary Science Scripps Institution of Oceanography University of California San Diego San Diego CA USA

2. Planetary Science Institute Tucson AZ USA

3. Department of Earth Ocean & Atmospheric Sciences University of British Columbia Vancouver BC Canada

Abstract

AbstractWe explore the potential for repeat‐pass SAR Interferometry (InSAR) correlation to track volcanic activity on Venus' surface motivated by future SAR missions to Earth's sister planet. We use Hawai'i as a natural laboratory to test whether InSAR can detect lava flows assuming orbital and instrument parameters similar to that of a Venus mission. Hawai'i was chosen because lava flows are frequent, and well documented by the United States Geological Survey, and because Hawai'i is a SAR supersite, where space agencies have offered open radar data sets for analysis. These data sets have different wavelengths (L, C, and X bands), bandwidths, polarizations, look angles, and a variety of orbital baselines, giving opportunity to assess the suitability of parameters for detecting lava flows. We analyze data from ALOS‐2 (L‐band), Sentinel‐1 (C‐band), and COSMO‐SkyMed (X‐band) spanning 2018 and 2022. We perform SAR amplitude and InSAR correlation analysis over temporal baselines and perpendicular baselines similar to those of a Venus mission. Fresh lava flows create a sharp, noticeable decrease in InSAR correlation that persists indefinitely for images spanning the event. The same lava flows are not always visible in the corresponding amplitude images. Moreover, noticeable decorrelation persists in image pairs acquired months after the events due to post‐emplacement contraction of flows. Post‐emplacement effects are hypothesized to last longer on the Venusian surface, increasing the likelihood of detecting Venus lava flows using InSAR. We argue for further focus on repeat‐pass InSAR capabilities in upcoming Venus missions, to detect and quantify volcanic activity on Earth's hotter twin.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3