Affiliation:
1. School of Infrastructure Indian Institute of Technology Bhubaneswar Odisha India
2. Department of Geology and Environmental Geosciences University of Dayton Dayton OH USA
3. Divecha Centre for Climate Change Indian Institute of Science Bangalore India
4. Department of Civil Engineering India Institute of Technology Indore Indore India
5. Department of Geography University of Zurich Zurich Switzerland
Abstract
AbstractHimalaya is experiencing frequent catastrophic mass movement events such as avalanches and landslides, causing loss of human lives and infrastructure. Millions of people reside in critical zones potentially exposed to such catastrophes. Despite this, a comprehensive assessment of mass movement exposure is lacking at a regional scale. Here, we developed a novel method of determining mass movement trajectories and applied it to the Himalayan Mountain ranges for the first time to quantify the exposure of infrastructure, waterways, roadways, and population in six mountain ranges, including Hindu Kush, Karakoram, western Himalaya, eastern Himalaya, central Himalaya, and Hengduan Shan. Our results reveal that the exposure of buildings and roadways to mass movements is highest in Karakoram, whereas central Himalaya has the highest exposed waterways. The hotspots of exposed roadways are concentrated in Nepal, the North Indian states of Uttarakhand, Himachal Pradesh, the Union Territory of Ladakh, and China's Sichuan Province. Our analysis shows that the population in the central Himalaya is currently at the highest exposure to mass movement impacts. Projected future populations based on Shared Socio‐economic and Representative Concentration Pathways suggest that changing settlement patterns and emission scenarios will significantly influence the potential impact of these events on the human population. Assessment of anticipated secondary hazards (glacial lake outburst floods) shows an increase in probable headward impacts of mass movements on glacial lakes in the future. Our findings will support researchers, policymakers, stakeholders, and local governments in identifying critical areas that require detailed investigation for risk reduction and mitigation.
Funder
Ministry of Environment, Forest and Climate Change
National Aeronautics and Space Administration
Indian Institute of Science
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献