Do Derived Drought Indices Better Characterize Future Drought Change?

Author:

Jiang Ze1ORCID,Johnson Fiona1ORCID,Sharma Ashish1ORCID

Affiliation:

1. School of Civil and Environmental Engineering University of New South Wales Sydney NSW Australia

Abstract

AbstractCurrent methods for climate change assessment ignore the significant differences in uncertainty in model projections of the two key constituents of drought, precipitation, and evapotranspiration. We present here a new basis for assessing future drought using climate model simulations that addresses this limitation. The new method estimates the Standardized Precipitation Evapotranspiration Index (SPEI) in a two‐stage process. The first stage of our proposed approach is to derive the Standardized Precipitation Index (SPI) using reliable atmospheric variables, which are filtered with a wavelet‐based spectral transformation. This derived SPI is then converted to an equivalent SPEI by combining it with climate model evapotranspiration simulations. We assess the performance of our proposed approach across Australia. The consistency of general circulation model (GCM) drought projections, in terms of both frequency and severity, is improved using the derived SPI. Incorporating evapotranspiration further improves the consistency of the multiple GCMs and drought time scales. The proposed framework can also be generalized to other water resources applications, where the differences in GCM uncertainty for precipitation and evapotranspiration affect climate change impact assessments.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3