Extension of Large Fire Emissions From Summer to Autumn and Its Drivers in the Western US

Author:

Wang S. S.‐C.1ORCID,Leung L. R.1ORCID,Qian Y.1ORCID

Affiliation:

1. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractBurned areas in the western US have increased ten‐fold since 1980s, which are attributable to multiple factors, including increasing heat, changing precipitation patterns, and extended drought. To better understand how these factors contribute to large fire emissions (gridded monthly fire emissions >95th percentile of all the fire emissions in the western US; 0.009 Gg/month), we build a machine learning model to predict fire emissions (PM2.5) over the western US at 0.25° resolution, interpreted using explainable artificial intelligence (XAI). From the predictor contributions derived from XAI, we conduct k‐means clustering analysis to identify four clusters of predictor variables representing different drivers of large fire emissions. The four clusters feature the contributions of fuel load (Cluster 1) and different levels of dryness (Cluster 2–4), controlled by fuel moisture, drought condition, and fire‐favorable large‐scale meteorological patterns featuring high temperature, high pressure, and low relative humidity. In the past two decades, large fire emissions peak in summer. However, large fire emissions increased significantly in September and October in 2010–2020 relative to 2000–2009, extending the peak large fire emissions from summer to autumn. The larger enhancements of large fire emissions during autumn compared to summer are contributed by decreased fuel moisture, along with more frequent concurrent fire‐favorable large‐scale meteorological patterns and drought. These results highlight fuel drying as a common driver supported by multiple drivers, such as warmer temperature and more frequent synoptic patterns favorable for fires, in increasing the autumn risk of large fire emissions across the western US.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3