Improving the Estimation of Nitrogen and Phosphorus Concentrations in Lakes and Reservoirs Using a Stacked Approach

Author:

Ma Chunzi12,Zhang Hanxiao2,Huo Shouliang2ORCID,Li Wenpan3,Liu Yong4ORCID,Xiao Zhe12,Xu Yunfeng1,Wu Fengchang2

Affiliation:

1. School of Environmental and Chemical Engineering Shanghai University Shanghai P. R. China

2. State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing P. R. China

3. China National Environmental Monitoring Centre Beijing P. R. China

4. Key Laboratory of Water and Sediment Sciences Ministry of Education College of Environmental Science and Engineering Peking University Beijing China

Abstract

AbstractA comprehensive and accurate estimation of water quality in lakes and reservoirs is vital for the protection of the aquatic biota. Research on the spatiotemporal variations of nitrogen (N) and phosphorus (P) concentrations in lacustrine systems is typically plagued, however, by a lack of long‐term, spatially continuous monitoring data. This paper assembled a 30‐year (1989–2018) data set of water quality in 586 lakes and reservoirs in China, along with basin characteristics and climate conditions, forming the comprehensive data set available. These data were then used in a stacking model (based on random forest, support vector regression, and K‐nearest neighbor models) to identify the relationships between nutrient concentrations and their influencing factors, including net anthropogenic N/P inputs, geographical position, climate, land use pattern, and soil type. The stacking models were developed using data collected over multiple time scales (annual, seasonal, and monthly), which were then applied to reconstruct TN and TP concentrations during the periods of 1980–2018 and 2020s–2050s under the climate scenarios of RCP 4.5 and RCP 8.5. The accuracy of the stacking models was 99.1% and 98.3% for TN and TP concentrations using ensembled data, respectively. The interannual variations in TN and TP contents in the 586 lakes and reservoirs during 1980–2018 exhibited a non‐monotonic pattern with a peak of 1.12 and 0.049 mg/L in 2007, respectively. This study demonstrates that stacking machine learning models represent a new effective approach for estimating nutrient concentrations in unmonitored lakes and reservoirs across broad spatiotemporal scales.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3