Neural Network Parameterization of Subgrid‐Scale Physics From a Realistic Geography Global Storm‐Resolving Simulation

Author:

Watt‐Meyer Oliver1ORCID,Brenowitz Noah D.2ORCID,Clark Spencer K.13ORCID,Henn Brian1ORCID,Kwa Anna1ORCID,McGibbon Jeremy1,Perkins W. Andre1,Harris Lucas3ORCID,Bretherton Christopher S.1ORCID

Affiliation:

1. Allen Institute for Artificial Intelligence Seattle WA USA

2. NVIDIA Corporation Santa Clara CA USA

3. Geophysical Fluid Dynamics Laboratory NOAA Princeton NJ USA

Abstract

AbstractParameterization of subgrid‐scale processes is a major source of uncertainty in global atmospheric model simulations. Global storm‐resolving simulations use a finer grid (less than 5 km) to reduce this uncertainty by explicitly resolving deep convection and details of orography. This study uses machine learning to replace the physical parameterizations of heating and moistening rates, but not wind tendencies, in a coarse‐grid (200 km) global atmosphere model, using training data obtained by spatially coarse‐graining a 40‐day realistic geography global storm‐resolving simulation. The training targets are the three‐dimensional fields of effective heating and moistening rates, including the effect of grid‐scale motions that are resolved but imperfectly simulated by the coarse model. A neural network is trained to predict the time‐dependent heating and moistening rates in each grid column using the coarse‐grained temperature, specific humidity, surface turbulent heat fluxes, cosine of solar zenith angle, land‐sea mask and surface geopotential of that grid column as inputs. The coefficient of determination R2 for offline prediction ranges from 0.4 to 0.8 at most vertical levels and latitudes. Online, we achieve stable 35‐day simulations, with metrics of skill such as the time‐mean pattern of near‐surface temperature and precipitation comparable or slightly better than a baseline simulation with conventional physical parameterizations. However, the structure of tropical circulation and relative humidity in the upper troposphere are unrealistic. Overall, this study shows potential for the replacement of human‐designed parameterizations with data‐driven ones in a realistic setting.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3