Using Shortened Spin‐Ups to Speed Up Ocean Biogeochemical Model Optimization

Author:

Oliver S.1ORCID,Khatiwala S.2ORCID,Cartis C.3ORCID,Ward Ben4ORCID,Kriest Iris5ORCID

Affiliation:

1. National Oceanography Centre Southampton UK

2. Department of Earth Sciences University of Oxford Oxford UK

3. Mathematical Institute University of Oxford Oxford UK

4. School of Ocean and Earth Science University of Southampton Southampton UK

5. GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany

Abstract

AbstractThe performance of global ocean biogeochemical models can be quantified as the misfit between modeled tracer distributions and observations, which is sought to be minimized during parameter optimization. These models are computationally expensive due to the long spin‐up time required to reach equilibrium, and therefore optimization is often laborious. To reduce the required computational time, we investigate whether optimization of a biogeochemical model with shorter spin‐ups provides the same optimized parameters as one with a full‐length, equilibrated spin‐up over several millennia. We use the global ocean biogeochemical model MOPS with a range of lengths of model spin‐up and calibrate the model against synthetic observations derived from previous model runs using a derivative‐free optimization algorithm (DFO‐LS). When initiating the biogeochemical model with tracer distributions that differ from the synthetic observations used for calibration, a minimum spin‐up length of 2,000 years was required for successful optimization due to certain parameters which influence the transport of matter from the surface to the deeper ocean, where timescales are longer. However, preliminary results indicate that successful optimization may occur with an even shorter spin‐up by a judicious choice of initial condition, here the synthetic observations used for calibration, suggesting a fruitful avenue for future research.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3