Modular Compositional Learning Improves 1D Hydrodynamic Lake Model Performance by Merging Process‐Based Modeling With Deep Learning

Author:

Ladwig R.1ORCID,Daw A.2,Albright E. A.1ORCID,Buelo C.1,Karpatne A.2,Meyer M. F.13,Neog A.2,Hanson P. C.1ORCID,Dugan H. A.1ORCID

Affiliation:

1. Center for Limnology University of Wisconsin‐Madison Madison WI USA

2. Department of Computer Sciences Virginia Tech Blacksburg VI USA

3. Observing Systems Division U.S. Geological Survey Madison WI USA

Abstract

AbstractHybrid Knowledge‐Guided Machine Learning (KGML) models, which are deep learning models that utilize scientific theory and process‐based model simulations, have shown improved performance over their process‐based counterparts for the simulation of water temperature and hydrodynamics. We highlight the modular compositional learning (MCL) methodology as a novel design choice for the development of hybrid KGML models in which the model is decomposed into modular sub‐components that can be process‐based models and/or deep learning models. We develop a hybrid MCL model that integrates a deep learning model into a modularized, process‐based model. To achieve this, we first train individual deep learning models with the output of the process‐based models. In a second step, we fine‐tune one deep learning model with observed field data. In this study, we replaced process‐based calculations of vertical diffusive transport with deep learning. Finally, this fine‐tuned deep learning model is integrated into the process‐based model, creating the hybrid MCL model with improved overall projections for water temperature dynamics compared to the original process‐based model. We further compare the performance of the hybrid MCL model with the process‐based model and two alternative deep learning models and highlight how the hybrid MCL model has the best performance for projecting water temperature, Schmidt stability, buoyancy frequency, and depths of different isotherms. Modular compositional learning can be applied to existing modularized, process‐based model structures to make the projections more robust and improve model performance by letting deep learning estimate uncertain process calculations.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3