A New Comprehensive Cloud Macrophysics Scheme With a Prognostic Dual‐Triangular PDF

Author:

Song Chanwoo1ORCID,Park Sungsu1ORCID

Affiliation:

1. School of Earth and Environmental Sciences Seoul National University Seoul South Korea

Abstract

AbstractTo improve cloud simulation in a general circulation model, we develop a new cloud macrophysics scheme that treats detrained cumulus generated by convective detrainment process separately from pure stratus; prognoses two symmetric triangular probability density functions of total specific humidity for each detrained cumulus and pure stratus; and diagnoses both cloud fraction and cloud condensate in all liquid, ice, and mixed‐phases in a consistent and unified way without any adjustment to remove empty or very dense cloud. Supersaturation is allowed within ice cloud. The new scheme (“NEW”) is compared with the previous model (“OLD”) using single‐column simulations for subtropical marine stratocumulus (DYCOMS2) and continental deep convection (ARM97) cases. In DYCOMS2, both NEW and OLD produce vertical profiles of grid‐mean cloud condensate similar to large‐eddy simulation. In ARM97, compared with OLD, NEW simulates less sporadic vertical profiles of in‐cloud condensates, due to consistent diagnosis of cloud fraction and cloud condensate; more continuously‐varying detrained cumulus with time, due to prognostic treatment of detrained cumulus; and ice cloud fraction and ice condensate similar to those of OLD, in spite of completely different treatment of ice cloud processes. The global performance of NEW is similar to OLD with improved relative humidity. Compared to OLD, NEW simulates more and improved cloud condensate, but less and degraded cloud fraction, particularly, in the lower troposphere. Detrained cumulus is moister and colder and has a larger moisture variance than pure stratus. Overall, NEW simulates stronger condensation‐deposition rates than OLD, due in part to the separate treatment of detrained cumulus and pure stratus.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3