A Two‐Column Model Parameterization for Subgrid Surface Heterogeneity Driven Circulations

Author:

Waterman T.1ORCID,Bragg A. D.1,Hay‐Chapman F.2ORCID,Dirmeyer P. A.2ORCID,Fowler M. D.3ORCID,Simon J.1ORCID,Chaney N.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Duke University Pratt School of Engineering Durham NC USA

2. Atmospheric Oceanic and Earth Sciences Department George Mason University Fairfax VA USA

3. National Center for Atmospheric Research (NCAR) Boulder CO USA

Abstract

AbstractEarth system models currently struggle to account for the complex effects that land surface heterogeneity can have on land‐atmosphere interactions. There have been attempts to include the impact of this heterogeneity on the atmosphere, but they ignore the development of coherent circulations that can be driven by spatial differential surface heating. A wealth of literature, particularly large‐eddy simulation (LES) based studies, shows that these circulations have significant impacts on the development and organization of clouds. In this work, we describe a two‐column model with a parameterized circulation driven by atmospheric virtual potential temperature profiles, differences in near surface temperature between the two columns, patterns of surface heterogeneity, and the mean background wind. Key aspects of the proposed model structure are compared with LES output, and the model is then implemented between two otherwise independent single column models. While some avenues for improvement exist, when the circulations are parameterized, we see increased cloud development and realistic changes to the mean profiles of temperature and moisture. The proposed model qualitatively matches expectations from the literature and LES, and points to the potential success of its future implementation in coarse grid models.

Funder

Climate Program Office

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3