A 1D Model for Nucleation of Ice From Aerosol Particles: An Application to a Mixed‐Phase Arctic Stratus Cloud Layer

Author:

Knopf Daniel A.1ORCID,Silber Israel23ORCID,Riemer Nicole4ORCID,Fridlind Ann M.5ORCID,Ackerman Andrew S.5ORCID

Affiliation:

1. School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA

2. Department of Meteorology and Atmospheric Science Pennsylvania State University University Park PA USA

3. Now at Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

4. Department of Atmospheric Sciences University of Illinois at Urbana–Champaign Urbana IL USA

5. NASA Goddard Institute for Space Studies New York NY USA

Abstract

AbstractMixed‐phase clouds (MPCs) have been identified as significant contributors to uncertainties in climate projections, attributable to model representation of processes controlling the formation and loss of supercooled water droplets and ice particles from the atmosphere. Arctic MPCs are commonly widespread and long‐lived, with sustained ice crystal formation processes that challenge current understanding. This study examines the ice‐nucleating particle (INP) reservoir dynamics governing immersion‐mode heterogeneous freezing in an observed case of Arctic MPCs using a simplified 1D aerosol‐cloud model. The model setup includes prescribed dynamical forcings and thermodynamic profiles, and represents INPs as multicomponent and polydisperse particle size distributions. Diagnostic and prognostic approaches to immersion freezing parameterization are compared, including time‐independent (singular) number‐ and surface area‐based descriptions and a time‐dependent description following classical nucleation theory (CNT). The choice of freezing parameterization defines the size of the INP reservoir. The CNT‐based description yields an orders of magnitude larger INP reservoir than the singular parameterizations, which is the dominant factor for sustained ice crystal formation. The efficiency of the freezing process and cloud cooling are of secondary importance. A diagnostic treatment neglecting INP loss is only accurate when the INP reservoir size is large and INP depletion weak. Since a larger INP reservoir sustains ice crystal formation substantially longer, and ice water path scales with ice crystal concentrations for the conditions considered, resolving the source of differences in INP reservoir dynamics due to model implementation is a high priority for advancing climate model physics.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3