Resolving Weather Fronts Increases the Large‐Scale Circulation Response to Gulf Stream SST Anomalies in Variable‐Resolution CESM2 Simulations

Author:

Wills Robert C. J.12ORCID,Herrington Adam R.2ORCID,Simpson Isla R.2ORCID,Battisti David S.3ORCID

Affiliation:

1. Institute of Atmospheric and Climate Science ETH Zurich Zurich Switzerland

2. NSF National Center for Atmospheric Research Boulder CO USA

3. Department of Atmospheric Sciences University of Washington Seattle WA USA

Abstract

AbstractCanonical understanding based on general circulation models (GCMs) is that the atmospheric circulation response to midlatitude sea‐surface temperature (SST) anomalies is weak compared to the larger influence of tropical SST anomalies. However, the ∼100‐km horizontal resolution of modern GCMs is too coarse to resolve strong updrafts within weather fronts, which could provide a pathway for surface anomalies to be communicated aloft. Here, we investigate the large‐scale atmospheric circulation response to idealized Gulf Stream SST anomalies in Community Atmosphere Model (CAM6) simulations with 14‐km regional grid refinement over the North Atlantic, and compare it to the responses in simulations with 28‐km regional refinement and uniform 111‐km resolution. The highest resolution simulations show a large positive response of the wintertime North Atlantic Oscillation (NAO) to positive SST anomalies in the Gulf Stream, a 0.4‐standard‐deviation anomaly in the seasonal‐mean NAO for 2°C SST anomalies. The lower‐resolution simulations show a weaker response with a different spatial structure. The enhanced large‐scale circulation response results from an increase in resolved vertical motions with resolution and an associated increase in the influence of SST anomalies on transient‐eddy heat and momentum fluxes in the free troposphere. In response to positive SST anomalies, these processes lead to a stronger and less variable North Atlantic jet, as is characteristic of positive NAO anomalies. Our results suggest that the atmosphere responds differently to midlatitude SST anomalies in higher‐resolution models and that regional refinement in key regions offers a potential pathway to improve multi‐year regional climate predictions based on midlatitude SSTs.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3