Nutrient Dynamics in a Coupled Terrestrial Biosphere and Land Model (ELM‐FATES‐CNP)

Author:

Knox Ryan G.1ORCID,Koven Charles D.1ORCID,Riley William J.1ORCID,Walker Anthony P.2ORCID,Wright S. Joseph3ORCID,Holm Jennifer A.1ORCID,Wei Xinyuan2ORCID,Fisher Rosie A.4ORCID,Zhu Qing1ORCID,Tang Jinyun1ORCID,Ricciuto Daniel M.2ORCID,Shuman Jacquelyn K.5ORCID,Yang Xiaojuan2ORCID,Kueppers Lara M.16ORCID,Chambers Jeffrey Q.16

Affiliation:

1. Lawrence Berkeley National Laboratory Berkeley CA USA

2. Oak Ridge National Laboratory Oak Ridge TN USA

3. Smithsonian Tropical Research Institute Ancon Panama

4. CICERO Center for International Climate Research Oslo Norway

5. Now at NASA Ames Research Center National Center for Atmospheric Research Boulder CO USA

6. University of California Berkeley CA USA

Abstract

AbstractWe present a representation of nitrogen and phosphorus cycling in the Functionally Assembled Terrestrial Ecosystem Simulator, a demographic vegetation model within the Energy Exascale Earth System land model. This representation is modular, and designed to allow testing of multiple hypothetical approaches for carbon‐nutrient coupling in plants. Novel model hypotheses introduced in this work include, (a) the controls on plant acquisition of aqueous mineralized nutrients in the soil and (b) fairly straight forward methods of allocating nutrients to specific plant organs and their losses through live plant turnover as well as litter fluxes generated through plant mortality. This combines the new with pre‐existing hypotheses (such as nitrogen fixation and soil decomposition) into a system that can accommodate plant‐soil dynamics for a large number of size‐ and functional‐type‐resolved plant cohorts within a time‐since‐disturbance‐resolved ecosystem. Root uptake of nutrients is governed by fine root biomass, and plants vary in their fine root biomass allocation in order to balance carbon and nutrient limitations to growth. We test the sensitivity of the model to a wide range of parameter variations and structural representations, and in the context of observations at Barro Colorado Island, Panama. A key model prediction is that plants in the high‐light‐availability canopy positions allocate more carbon to fine roots than plants in low‐light understory environments, given the widely different carbon versus nutrient constraints of these two niches within a given ecosystem. This model provides a basis for exploring carbon‐nutrient coupling with vegetation demography within Earth system models.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3