Emulation of Cloud Microphysics in a Climate Model

Author:

Perkins W. Andre1ORCID,Brenowitz Noah D.2ORCID,Bretherton Christopher S.1ORCID,Nugent Jacqueline M.3ORCID

Affiliation:

1. Allen Institute for Artificial Intelligence Seattle WA USA

2. NVIDIA Santa Clara CA USA

3. University of Washington Seattle WA USA

Abstract

AbstractWe present a machine learning based emulator of a microphysics scheme for condensation and precipitation processes (Zhao‐Carr) used operationally in a global atmospheric forecast model (FV3GFS). Our tailored emulator architecture achieves high skill (≥94%) in predicting condensate and precipitation amounts and maintains low global‐average bias (≤4%) for 1 year of continuous simulation when replacing the Fortran scheme. The stability and success of this emulator stems from key design decisions. By separating the emulation of condensation and precipitation processes, we can better enforce physical priors such as mass conservation and locality of condensation, and the vertical dependence of precipitation falling downward, using specific network architectures. An activity classifier for condensation imitates the discrete‐continuous nature of the Fortran microphysics outputs (i.e., tendencies are identically zero where the scheme is inactive, and condensate is zero where clouds are fully evaporated). A temperature‐scaled conditional loss function ensures accurate condensate adjustments for a high dynamic range of cloud types (e.g., cold, low‐condensate cirrus clouds or warm, condensate‐rich clouds). Despite excellent overall performance, the emulator exhibits some deficiencies in the uppermost model levels, leading to biases in the stratosphere. The emulator also has short episodic skill dropouts in isolated grid columns and is computationally slower than the original Fortran scheme. Nonetheless, our challenges and strategies should be applicable to the emulation of other microphysical schemes. More broadly, our work demonstrates that with suitable physically motivated architectural choices, ML techniques can accurately emulate complex human‐designed parameterizations of fast physical processes central to weather and climate models.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3