A Machine Learning Parameterization of Clouds in a Coarse‐Resolution Climate Model for Unbiased Radiation

Author:

Henn Brian1ORCID,Jauregui Yakelyn R.2ORCID,Clark Spencer K.13ORCID,Brenowitz Noah D.4ORCID,McGibbon Jeremy1,Watt‐Meyer Oliver1ORCID,Pauling Andrew G.5,Bretherton Christopher S.1ORCID

Affiliation:

1. Allen Institute for Artificial Intelligence Seattle WA USA

2. University of Washington Seattle WA USA

3. NOAA Geophysical Fluid Dynamics Laboratory Princeton NJ USA

4. NVIDIA Corporation Santa Clara CA USA

5. University of Otago Dunedin New Zealand

Abstract

AbstractCoarse‐grid weather and climate models rely particularly on parameterizations of cloud fields, and coarse‐grained cloud fields from a fine‐grid reference model are a natural target for a machine‐learned parameterization. We machine‐learn the coarsened‐fine cloud properties as a function of coarse‐grid model state in each grid cell of NOAA's FV3GFS global atmosphere model with 200 km grid spacing, trained using a 3 km fine‐grid reference simulation with a modified version of FV3GFS. The ML outputs are coarsened‐fine fractional cloud cover and liquid and ice cloud condensate mixing ratios, and the inputs are coarse model temperature, pressure, relative humidity, and ice cloud condensate. The predicted fields are skillful and unbiased, but somewhat under‐dispersed, resulting in too many partially cloudy model columns. When the predicted fields are applied diagnostically (offline) in FV3GFS's radiation scheme, they lead to small biases in global‐mean top‐of‐atmosphere (TOA) and surface radiative fluxes. An unbiased global‐mean TOA net radiative flux is obtained by setting to zero any predicted cloud with grid‐cell mean cloud fraction less than a threshold of 6.5%; this does not significantly degrade the ML prediction of cloud properties. The diagnostic, ML‐derived radiative fluxes are far more accurate than those obtained with the existing cloud parameterization in the nudged coarse‐grid model, as they leverage the accuracy of the fine‐grid reference simulation's cloud properties.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3