A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models

Author:

Roy Abhinanda1,Kasiviswanathan K. S.12ORCID,Patidar Sandhya3ORCID,Adeloye Adebayo J.3ORCID,Soundharajan Bankaru‐Swamy4,Ojha Chandra Shekhar P.5

Affiliation:

1. Department of Water Resources Development and Management Indian Institute of Technology Roorkee Roorkee India

2. Mehta Family School of Data Science and Artificial Intelligence Indian Institute of Technology Roorkee Roorkee India

3. The School of Energy, Geoscience, Infrastructure and Society Heriot‐Watt University Edinburgh UK

4. Department of Civil Engineering Amrita School of Engineering Amrita Vishwa Vidyapeetham Coimbatore India

5. Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee India

Abstract

AbstractModeling hydrological processes for managing the available water resources effectively is often complex due to the existence of high nonlinearity, and the associated prediction uncertainty mainly arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance. This paper presents a novel modeling framework for minimizing the prediction uncertainty in the streamflow simulation of the conceptual hydrological model (HBV) by integrating with the Bayesian‐based Particle Filter technique (PF) and machine learning algorithm (Random Forest algorithm, RF). Initially, the streamflow prediction interval (PI) is derived from the stochastically estimated parameters of the HBV model through the PF technique (HBV‐PF model). As the HBV‐PF model quantifies only parametric uncertainty, the RF algorithm was employed (HBV‐PF‐RF model) for further minimizing the prediction uncertainty by inherently taking care of different sources of uncertainty. The RF algorithm inherently combines the physics of the hydrological system (i.e., process‐based variables) with machine learning‐based approach to minimize the overall prediction uncertainty. The proposed framework was analyzed on Nepal and India's Sunkoshi and Beas River basins, through several statistical performance indices for assessing the accuracy and uncertainty of the model prediction. The framework was observed to be consistently improving the model performance minimizing the uncertainty in both watersheds. Therefore, the proposed framework can be considered to be more reliable in improving the prediction capability of hydrological models.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3