Modeling Physical and Physiological Processes Reveals the Role of Turbulence in the Prerequisites for Microcystis Blooms

Author:

Li Na1ORCID,Gao Xueping1,Sun Bowen1ORCID

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University Tianjin China

Abstract

AbstractHarmful algal blooms of Microcystis have become a global problem. Turbulence, a determining factor affecting blooms, not only disperses surface scum but also controls the growth of Microcystis. Numerous studies have analyzed the effects of turbulence on the growth and colony size of Microcystis in laboratories, but the turbulence thresholds for Microcystis growth and colony disaggregation in the field are difficult to determine due to the complex environment. In addition, the quantitative contribution of turbulence‐driven blooms and the intrinsic mechanisms of the spatial distribution responding to turbulence are unclear. In this study, a fully integrated filed scale computational model focusing on turbulence‐driven blooms was developed, which incorporates physical processes (turbulence‐induced vertical mixing, VMT) and physiological processes such as buoyancy‐controlling transport (BCT), turbulence‐induced colony size variation (CSV), and growth rate variation (GRV). We performed model sensitivity analysis and evaluated the effects of turbulence intensity and duration on the biomass and vertical distribution of Microcystis. The results show that the optimal turbulence dissipation rate for Microcystis growth in the field is 1.0 × 10−5 m2/s3 and the critical turbulence dissipation rate for aggregation distribution is 3.81 × 10−6 m2/s3 in shallow lakes. A quantitative comparison of the effects of physical/physiological processes on blooms shows that physiological processes (CSV, GRV, and BCT) are critical for biomass enrichment, and the accumulation of Microcystis at the water surface is dominated by physical processes (VMT). This study reveals the mechanisms of turbulence‐driven Microcystis blooms and provides new insights for algal bloom prediction and control.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3