Modified Tracer Gas Injection for Measuring Stream Gas Exchange Velocity in the Presence of Significant Temperature Variation

Author:

Jensen Craig R.1ORCID,Genereux David P.1ORCID,Gilmore Troy E.23ORCID,Solomon D. Kip4ORCID

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences North Carolina State University Raleigh NC USA

2. Conservation and Survey Division School of Natural Resources University of Nebraska–Lincoln Lincoln NE USA

3. Biological Systems Engineering Department University of Nebraska–Lincoln Lincoln NE USA

4. Department of Geology and Geophysics University of Utah Salt Lake City UT USA

Abstract

AbstractGas exchange between streams and overlying air is an important physical‐chemical environmental process that is typically determined by injecting a tracer gas into a stream at a steady rate and sampling steady‐state tracer gas concentrations in the stream water. Previous modes of tracer gas injection allow gas‐water partitioning of the tracer gas, making the rate of gas injection and thus the measured gas transfer velocity potentially sensitive to temperature variation. Presented here is a modification to the tracer solution injection method in which a tracer gas solution was prepared in Tedlar® bags from which all headspace was removed before injecting the solution into the stream. Along with four other strategies to prevent a headspace from forming in the bags during tracer injection in the field, this zero‐headspace tracer solution method prevents gas‐water partitioning anywhere in the injection system, allowing a steady delivery of tracer gas to the stream even in the presence of variation in air and/or stream water temperature. A field test of the method in Nebraska yielded a gas transfer velocity of 4.1 m/day, within the range found in the literature for similarly‐sized streams.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3