Predicting Ecosystem Net Primary Productivity by Percolation Theory and Optimality Principle

Author:

Hunt Allen G.1ORCID,Sahimi Muhammad2ORCID,Ghanbarian Behzad3ORCID,Poveda German4ORCID

Affiliation:

1. Department of Physics Wright State University Dayton OH USA

2. Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los Angeles CA USA

3. Porous Media Research Lab Department of Geology Kansas State University Manhattan KS USA

4. Department of Geosciences and Environment Universidad Nacional de Colombia Medellín Colombia

Abstract

AbstractThe basic partitioning of precipitation P into evapotranspiration ET and run‐off Q is known as the “central problem of hydrology.” ET depends primarily on precipitation, P, and potential evapotranspiration, PET, which are connected by the biological process of photosynthesis. Photosynthesis is the fundamental step underlying the productivity of plant ecosystems. An important measure of plant productivity is the creation of plant biomass, which is quantified by net primary productivity, NPP. NPP is most parsimoniously related simply to the evapotranspiration, ET. The dependence of NPP (ET) appears to be in the form of a power law with an upper limit derived from the maximum plant‐available solar energy accessible on Earth. However, theoretical, rather than phenomenological, treatments relating ET and its complementary variable, run‐off (P − ET ≡ Q) to climate variables that measure the available energy (PET) and available water (P) (known as the water balance) are, at best, scarce, and their continued application to predicting NPP (P, PET) even more so. One theory developed recently to predict the water balance is based on determining how to divide P into Q and ET in such a way as to maximize NPP. Substitution of the resulting optimized ET (P, PET) into the function NPP (ET) then yields NPP (P, PET). We investigate the possibility that this new theoretical framework, which yields ET(P, PET) based on ecological optimality and percolation theory, can predict the dependence of NPP (P, PET). If the prediction of NPP (P, PET) is verified, this result may lead to significant progress in other areas, including the problem of the chief causes of geographical variability of species richness.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3