Hydraulic Properties Within the Complete Moisture Range of Hydric Soil on the Tibetan Plateau

Author:

Wang X.1ORCID,Wang Z. L.1ORCID,Yang W.1ORCID,Liu R.1ORCID

Affiliation:

1. Key Laboratory of Cryospheric Science and Frozen Soil Engineering Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

Abstract

AbstractThe Tibetan Plateau is well‐known for its expansive wetland environments. Hydric soils, a fundamental component of these environments, exhibit diverse hydraulic characteristics attributable to their varied botanical and mineralogical composition and their inherent porous structures. Nonetheless, research on the hydraulic properties of such soils in Tibet remains notably underrepresented relative to European and Canadian regions. Consequently, in this study, we evaluate the effectiveness of different unsaturated hydraulic schemes in equilibrium and examine the parameter uncertainty of 14 undisturbed samples collected from four soligenous wetlands. The findings suggest that both the van Genuchten and Kosugi functions, when integrated with the Peters‐Iden‐Durner (PDI) model, yield a nearly consistent fit to experimental observations and demonstrate strong identifiability of parameters. This indicates that the PDI model can accurately characterize hydraulic properties across the complete moisture range of hydric soils. Analysis of samples with a low clay content and no sphagnum suggests that the intertwined, twisted, and hollow residues of herbaceous vascular tissues do not create a distinct, independent macro‐pore system. Therefore, the unimodal scheme integrating the PDI model is adequate. However, for samples that exhibit nonmonotonicity of the first‐order derivative of the retention curve, such as uncompacted samples containing sphagnum or samples rich in clay, the integration of the PDI model into the bimodal scheme boosts accuracy while having almost negligible impact on identifiability. The varied observed hydraulic properties of only 14 samples underscore the necessity for extensive hydric‐soil sampling and hydraulic analysis across the expansive and varied wetland landscapes on the Tibetan Plateau.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3