Estimation of Intensity‐Duration‐Area‐Frequency Relationships Based on the Full Range of Non‐Zero Precipitation From Radar‐Reanalysis Data

Author:

Haruna Abubakar1ORCID,Blanchet Juliette2ORCID,Favre Anne‐Catherine1

Affiliation:

1. University Grenoble Alpes Grenoble INP CNRS IRD IGE Grenoble France

2. University Grenoble Alpes CNRS IRD Grenoble INP IGE Grenoble France

Abstract

AbstractIntensity‐Duration‐Area‐Frequency (IDAF) models provide the mathematical link between precipitation intensities (I), durations (D), areas (A), and frequency of occurrence (F). They play a critical role in hydrological design, areal rainfall hazard quantification, storm characterization, and early warning system development. IDAF models extend the conventional Intensity‐Duration‐Frequency models by accounting for the spatial extent of precipitation (i.e., the area). In this study, we develop IDAF models using the entire non‐zero precipitation intensities, not only the extremes. We use the extended generalized Pareto distribution (EGPD) to model the precipitation intensities. To build the IDAF models, we adopt a data‐driven approach that allows the linkage of EGPD parameters with duration and area, based on empirically determined parametric relationships. The inference of model parameters is done using a global maximum likelihood estimation, and uncertainties are assessed by the bootstrap method. The study area is Switzerland, a topographically complex region of 42,000 km2 with regional precipitation variability and clear seasonality. The study utilizes 17 years of data from CombiPrecip, a radar‐reanalysis product developed by geostatistically merging radar and rain gauge data in an operational setting. We build the IDAF models for the spatiotemporal range of 1–72 hr and 1 to 1,089 km2 at each pixel in the study area. To the best of our knowledge, our study is the first attempt to use the EGPD in IDAF curve modeling. It discusses the use and limitations of CombiPrecip in extreme value analysis and highlights the challenges of modeling areal precipitation in a complex topographical environment.

Funder

Bundesamt für Energie

Bundesamt für Umwelt

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3