Hydrodynamic Response of Channel Flow Confluence to the Tributary Floodplain Topography

Author:

Yan Guanghui1,Yuan Saiyu12ORCID,Tang Hongwu12ORCID,Xu Dong2,Liu Mengyang2,Whittaker Colin3ORCID,Gualtieri Carlo4ORCID

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

2. Key Laboratory of Hydrologic‐Cycle and Hydrodynamic‐System of Ministry of Water Resources Hohai University Nanjing China

3. Department of Civil and Environmental Engineering The University of Auckland Auckland New Zealand

4. Department of Structures for Engineering and Architecture University of Napoli Federico II Napoli Italy

Abstract

AbstractRiver confluences with a compound‐channel tributary are common in large river networks, for example, the Yangtze River basin and the Amazon basin. They affect the confluence hydrodynamics, nutrient depletion and fish migration in the network, due to the seasonal exposure and submergence of the tributary floodplain. The corresponding influencing mechanisms are critical but poorly understood. This study investigated the hydrodynamic response of channel flow confluence to the tributary floodplain, that is, various widths and heights of the floodplain. Two kinds of secondary circulations were identified: One was due to the tributary streamline curvature, and the other produced by flow separation in the floodplain step. An increase in the floodplain size enhanced the strength of the secondary circulation in the compound tributary channel, but it disappeared near the junction because of the effects of the main channel. The decreased tributary cross‐sectional area amplified the flow momentum, resulting in a larger separation zone near the tributary‐side wall. The strength of floodplain‐induced secondary circulation increased as the floodplain width increased, and it moved toward the tributary‐side bank destroying the separation zone. Moreover, strong upwelling in the secondary circulation caused the rising water surface in the separation zone, which was supposed to be a region of falling water surface caused by energy loss and negative pressure. A conceptual model was proposed to summarize the hydrodynamics of confluence with different tributary floodplain topography. Our results provided a comprehensive knowledge of the confluence hydrodynamics, which have important implication for the flood management and ecological restoration of river basin.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3