Drag in Vegetation Canopy: Considering Sheltering and Blockage Effects

Author:

Liu Yuyan1,Wang Ping1ORCID

Affiliation:

1. Jixian National Forest Ecosystem Observation and Research Station CNERN School of Soil and Water Conservation Beijing Forestry University Beijing P. R. China

Abstract

AbstractVegetation plays a crucial role in river hydrodynamic processes, and the accurate prediction of canopy drag force is essential for effective river management and ecosystem protection. The interactions within the vegetation canopies must be quantified to understand their impact on drag force. Through a series of flume experiments, we conducted an investigation into the canopy interaction mechanism of rigid emergent aquatic vegetation, particularly focusing on the blockage and sheltering effects. Our experimental design includes various combinations of lateral and longitudinal spacing, as well as special single‐row and single‐column arrangements. This allowed us to provide a more precise understanding of how lateral and longitudinal spacing affect the blockage and sheltering effects. Furthermore, we introduced a unified reference velocity that combines two effects, based on which we have established a widely applicable drag model that can predict drag under various density conditions. Lastly, we proposed a critical characteristic value for quantifying drag. This value is instrumental in revealing the ultimate performance of drag under different spacing arrangements. The findings provide a reliable approach for predicting drag in rigid emergent vegetation canopies, significantly enhancing our understanding of vegetation's influence on hydrodynamic processes and offering a practical tool for river management and ecosystem protection.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3