Affiliation:
1. Department of Civil, Construction and Environmental Engineering North Carolina State University Raleigh NC USA
2. Lynker Fort Collins CO USA
3. Department of Biomedical Chemical and Environmental Engineering University of Cincinnati Cincinnati OH USA
Abstract
AbstractFloods cause hundreds of fatalities and billions of dollars of economic loss each year in the United States. To mitigate these damages, accurate flood prediction is needed for issuing early warnings to the public. This situation is exacerbated in larger model domains flood prediction, particularly in ungauged basins. To improve flood prediction for both gauged and ungauged basins, we propose a spatio‐temporal hierarchical model (STHM) using above‐normal flow estimation with a 10‐day window of modeled National Water Model (NWM) streamflow and a variety of catchment characteristics as input. The STHM is calibrated (1993–2008) and validated (2009–2018) in controlled, natural, and coastal basins over three broad groups, and shows significant improvement for the first two basin types. A seasonal analysis shows the most influential predictors beyond NWM streamflow reanalysis are the previous 3‐day average streamflow and the aridity index for controlled and natural basins, respectively. To evaluate the STHM in improving above‐normal streamflow in ungauged basins, 20‐fold cross‐validation is performed by leaving 5% of sites. Results show that the STHM increases predictive skill in over 50% of sites' by 0.1 Nash‐Sutcliffe efficiency (NSE) and improves over 65% of sites' streamflow prediction to an NSE > 0.67, which demonstrates that the STHM is one of the first of its kind and could be employed for flood prediction in both gauged and ungauged basins.
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献