Spatiotemporal Variation of Groundwater Nitrate Concentration Controlled by Groundwater Flow in a Large Basin: Evidence From Multi‐Isotopes (15N, 11B, 18O, and 2H)

Author:

Mao Hairu12ORCID,Wang Guangcai12ORCID,Liao Fu12,Shi Zheming12ORCID,Rao Zhi3,Zhang Hongyu12,Qiao Zhiyuan12,Bai Yunfei12ORCID,Chen Xianglong12ORCID,Yan Xin12,Wang Chenyu12,Yang Yang3

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution China University of Geosciences Beijing China

2. School of Water Resources and Environment China University of Geosciences Beijing China

3. Geological Environment Monitoring Institute of Jiangxi Geological Survey and Exploration Institute Nanchang China

Abstract

AbstractElevated and increasing concentration in groundwater affect groundwater supplies in China and elsewhere. However, how groundwater flow affects concentration in groundwater has yet to be fully understood. Herein, multi‐isotopes (15N, 11B, 18O, and 2H) and local indicators of spatial association (LISA) were used to elucidate the spatiotemporal variation, sources, and patterns of and its response to groundwater flow in Poyang Lake Basin where agriculture, industry and urban coexist. The location of hotspots identified by LISA tended to move from the middle to lower reaches of Ganfu Plain with groundwater flow, and hotspots area expanded in the upper reaches of Xin River Basin and northwest of the study area during the transition from dry season to wet season. Our results revealed that variations of regional concentration were controlled by groundwater recharge or flow mode (vertical or lateral), biogeochemical processes and sources (sewage and manure). In some areas with the single stratigraphic structure (unconfined aquifer), spatiotemporal variation of concentration was influenced by local pollution sources and vertical recharge of current precipitation (vertical flow). In some areas with binary structures (confined aquifer), groundwater was mainly recharged by lateral flow and concentration was mainly affected by mixing effect of upstream groundwater, reflecting human activities in the upper reaches rather than local human activities. In lakeside floodplain, groundwater was attenuated by the dissimilatory reduction to . This study provides a novel insight into groundwater flow controlling on spatiotemporal distribution of concentration in the regional scale.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3