Reduced‐Order Models Unravel the Joint Impact of Aperture Heterogeneity and Shear‐Thinning Rheology on Fracture‐Scale Flow Metrics

Author:

Lenci A.1ORCID,Méheust Y.2ORCID,Di Federico V.1ORCID,Ciriello V.1ORCID

Affiliation:

1. Department of Civil, Chemical, Environmental and Materials Engineering Università di Bologna Bologna Italy

2. University of Rennes CNRS Géosciences Rennes—UMR 6118 Rennes France

Abstract

AbstractSubsurface industrial operations often make use of complex engineered fluids. In fractured media, the hydraulic behavior of a geological fracture is affected by the shear‐thinning (ST) rheology of such fluids, depending on the imposed pressure gradient. Besides, owing to the stochastic nature of heterogeneities in the fracture's local apertures, obtaining the generic behavior of a fracture under ST flow requires large statistics of fractures whose aperture fields have the same statistical properties, namely their mean value, standard deviation, correlation length Lc, and Hurst exponent (which controls the scale invariances at scales smaller than Lc). The first such Monte Carlo study was recently proposed by Lenci, Putti, et al. (2022) using a new lubrication‐based model relying on a non‐linear Reynolds equation. This model describes the flow of an Ellis fluid, with both a low shear rate quasi‐Newtonian viscosity plateau and a large shear rate power law ST behavior, as measured for engineered fluids such as biopolymer solutions (e.g., xanthan gum). Here we aim to obtain the dependence of the fracture transmissivity and its dispersion over the statistics, as well as of the flow correlation length, on fracture closure, geometry correlation length, and applied pressure gradient, over a vast volume of the parameter space, and in a simple mathematical form. Employing reduced‐order models based on the polynomial chaos expansion theory to this aim, we discuss the properties of the obtained topographies of interest in the parameter space.

Funder

Università di Bologna

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3