Bed Shear Stress and Near‐Bed Flow Through Sparse Arrays of Rigid Emergent Vegetation

Author:

Aliaga J.1ORCID,Aberle J.1ORCID

Affiliation:

1. Leichtweiß‐Institute for Hydraulic Engineering and Water Resources Technische Universität Braunschweig Braunschweig Germany

Abstract

AbstractVegetation is an essential component of natural rivers and has significant effects on flow and morphodynamic processes. Although progress has been made in characterizing flow resistance in vegetated flows, the impact of vegetation on bed shear stress, a key driver of sediment transport, still needs better characterization and understanding. This research, explores bed shear stress and near‐bed flow characteristics in sparse arrays of rigid emergent cylinders mimicking vegetation over a rough bed. For this purpose, a novel adaptation of a shear plate was used to measure bed shear stress at the canopy scale. These measurements were analyzed in relation to spatially averaged near‐bed flow quantities for different array densities. The results show that, for a constant water depth, the investigated cylinder canopy enhances the ratio between bed shear stress and bulk flow velocity (i.e., Darcy‐Weisbach bed friction factor) compared to unobstructed open‐channel flows, and that this ratio increases with array density. Moreover, higher near‐bed velocities were observed for higher array densities. On the other hand, no influence of the cylinder array on near‐bed values of turbulent kinetic energy and turbulent stresses was observed. Finally, it is shown that the thickness of the near‐bed layer is a suitable parameter to scale the ratio between bed shear stress and bulk flow velocity in vegetated rough bed flows.

Funder

Deutscher Akademischer Austauschdienst

Agencia Nacional de Investigación y Desarrollo

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3