Influence of Liquid Splitting Behavior at Intersections on Infiltration Dynamics in an Unsaturated Fracture Network

Author:

Xue Song1234ORCID,Yang Zhibing12ORCID,Zhou Zexiong12,Hu Ran12ORCID,Chen Yi‐Feng12ORCID

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management Wuhan University Wuhan China

2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education Wuhan University Wuhan China

3. College of Hydraulic and Environmental Engineering China Three Gorges University Yichang China

4. Hubei Key Laboratory of Hydropower Engineering Construction and Management China Three Gorges University Yichang China

Abstract

AbstractUnderstanding the macro‐scale flow characteristics in the fractured vadose zone is of great importance for subsurface hydrological and environmental applications. Here we develop an idealized fracture network model composed of a series of linked intersections, aiming to reveal the roles of local fluid flow, storage and splitting behaviors at intersections in controlling macroscopic unsaturated flow in a fracture network. By setting different local flow rules, unsaturated flow dynamics and structure in networks are systematically investigated. Numerical simulations suggest that avalanche infiltration mode, that is, sudden release of a large amount of water from the network, emerges spontaneously, and is modulated by the local splitting behavior. In terms of water infiltration structure, we find that uneven liquid splitting at intersections inevitably leads to preferential flow in networks. The preferential paths strongly rely on the competition between gravitational and capillary forces, relating to network structure and water saturation. When flow is dominated by gravity, preferential paths extend along large‐aperture routes; conversely, when flow is dominated by capillarity, the small‐aperture paths are preferred. In terms of infiltration dynamics, we show that the power spectral density of the water saturation time series in the network follows a power law with an exponent of −2 for all simulations with different structural parameters and local flow rules, suggesting a universal self‐organized criticality behavior for unsaturated flow in fractured rocks. The improved understanding from this study may shed new light on the complex flow dynamics for unsaturated flow in fractured media.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and numerical investigation of droplet flow mechanisms at fracture intersections;Journal of Rock Mechanics and Geotechnical Engineering;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3