Developing a Fluvial and Pluvial Stochastic Flood Model of Southeast Asia

Author:

Olcese Gaia12ORCID,Bates Paul D.12ORCID,Neal Jeffrey C.12ORCID,Sampson Christopher C.2,Wing Oliver E. J.2,Quinn Niall2ORCID,Murphy‐Barltrop Callum J. R.34,Probyn Izzy2ORCID

Affiliation:

1. School of Geographical Sciences University of Bristol Bristol UK

2. Fathom Bristol UK

3. Technische Universität Dresden Institut Für Mathematische Stochastik Dresden Germany

4. Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Leipzig Germany

Abstract

AbstractFlood event set generation, as employed in catastrophe risk models, relies on gauge information that is not available in data‐scarce regions. To overcome this limitation, we develop a stochastic fluvial and pluvial flood model of Southeast Asia, using freely and globally available discharge data from the global hydrological model GloFAS and rainfall from the ERA5 reanalysis. We use a conditional multivariate statistical model to produce a synthetic catalog of 10,000 years of flood events. We calculate the flood population exposure associated with each flood event using freely available population data from WorldPop and generate exposure probability exceedance curves. We validate the population exposure curves against observed flood disaster data from EM‐DAT, showing that our methodology provides exposure estimates that are in line with historical observations. We find that there is a 1% probability that more than 30 million people will be exposed to flooding in a given year according to our event set. This number is roughly half the population living in the 100‐year return period flood zone of Fathom's hazard maps, suggesting most studies based on static flood maps overestimate exposure. This analysis provides significant progress over previous non‐stochastic studies which are only able to compute total or average exposure within a given floodplain area and demonstrates that a reanalysis‐based stochastic flood model can be designed to generate reliable estimates of population exposure probability exceedance. This study is a step toward a fully global catastrophe model for floods capable of providing exposure and loss estimates worldwide.

Funder

Engineering and Physical Sciences Research Council

Natural Environment Research Council

UK Research and Innovation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3