Groundwater Circulation Within the Mountain Block: Combining Flow and Transport Models With Magnetotelluric Observations to Untangle Its Nested Nature

Author:

Gonzalez‐Duque D.1ORCID,Gomez‐Velez J. D.12ORCID,Person M. A.3ORCID,Kelley S.3,Key K.45ORCID,Lucero D.3

Affiliation:

1. Department of Civil and Environmental Engineering Vanderbilt University Nashville TN USA

2. Environmental Sciences Division & Climate Change Science Institute Oak Ridge National Laboratory Oak Ridge TN USA

3. Department of Earth and Environmental Science New Mexico Institute of Mining and Technology Socorro NM USA

4. Department of Earth and Environmental Sciences Columbia University New York NY USA

5. Now at BlueGreen Geophysics, LLC San Diego CA USA

Abstract

AbstractMountains are vital water sources for humans and ecosystems, continuously replenishing lowland aquifers through surface runoff and mountain recharge. Quantifying these fluxes and their relative importance is essential for sustainable water resource management. However, our mechanistic understanding of the flow and transport processes determining the connection between the mountain block and the basin aquifer remains limited. Traditional conceptualizations assume groundwater circulation within the mountain block is predominantly shallow. This view neglects the role of deep groundwater flowpaths significantly contributing to the water, solute, and energy budgets. Overcoming these limitations requires a holistic characterization of the multiscale nature of groundwater flow along the mountain‐to‐valley continuum. As a proof‐of‐concept, we use a coupled groundwater flow and transport model to design a series of numerical experiments that explore the role of geology, topography, and weathering rates in groundwater circulation and their resulting resistivity patterns. Our results show that accumulating solutes near stagnation zones create contrasting electrical resistivity patterns that separate local, intermediate, and regional flow cells, presenting a target for magnetotelluric observations. To demonstrate the sensitivity of magnetotelluric data to features in our resistivity models, we use the MARE2DEM electromagnetic modeling code to perform forward and inverse simulations. This study highlights the potential of magnetotelluric surveys to image the resistivity structure resulting from multiscale groundwater circulation through relatively impervious crystalline basement rocks in mountainous terrains. This capability could change our understanding of the critical zone, offering a holistic perspective that includes deep groundwater circulation and its role in conveying solutes and energy.

Funder

National Science Foundation

American Geophysical Union

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3