Methylmercury Export From a Headwater Peatland Catchment Decreased With Cleaner Emissions Despite Opposing Effect of Climate Warming

Author:

McCarter C. P. R.1ORCID,Sebestyen S. D.2ORCID,Jeremiason J. D.3,Nater E. A.4ORCID,Kolka R. K.2ORCID

Affiliation:

1. Department of Biology, Chemistry and Geography Nipissing University North Bay ON Canada

2. USDA Forest Service Northern Research Station Grand Rapids MN USA

3. Department of Chemistry Gustavus Adolphus College St. Peter MN USA

4. Department of Soil, Water, and Climate University of Minnesota St. Paul MN USA

Abstract

AbstractPeatlands are sources of bioaccumulating neurotoxin methylmercury (MeHg) that is linked to adverse health outcomes. Yet, the compounding impacts of climate change and reductions in atmospheric pollutants on mercury (Hg) export from peatlands are highly uncertain. We investigated the response in annual flow‐weighted concentrations (FWC) and yields of total‐Hg (THg) and MeHg to cleaner air and climate change using an unprecedented hydroclimatic (55‐year; streamflow, air temperature, precipitation, and peatland water tables), depositional chemistry (21‐year; Hg and major ions), and streamwater chemistry (∼17‐year; THg, MeHg, major ions, total organic carbon, and pH) data sets from a reference peatland catchment in Minnesota, USA. Over the hydroclimatic record, annual mean air temperature increased by ∼1.8°C, while baseflow and the efficiency that precipitation was converted to runoff (runoff ratio) decreased. Concurrently, precipitation‐based deposition of sulfate and Hg declined, where wet Hg deposition declined by ∼3–4 μg Hg m−2. Despite declines in wet Hg deposition over the study period, the catchment accumulated on average 0.04 ± 0.01 g Hg ha−1 yr−1 based on wet Hg deposition minus THg yield alone. Annual MeHg FWC was positively correlated with mean annual air temperatures (p = 0.03, r = 0.51), runoff ratio (p < 0.0001, r = 0.76), and wet Hg deposition concentration (p < 0.0001, r = 0.79). Decreasing wet Hg deposition and annual runoff ratios counterbalanced increased peatland MeHg production due to higher air temperatures, leading to an overall decline in streamwater MeHg FWC. Streamwater MeHg export may continue to decrease only as long as declines in runoff ratio and wet Hg deposition persistently outpace effects of increased air temperature.

Funder

Canada Research Chairs

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3