Demonstrating a Hybrid Machine Learning Approach for Snow Characteristic Estimation Throughout the Western United States

Author:

Steele Hannah1ORCID,Small Eric E.2ORCID,Raleigh Mark S.1ORCID

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA

2. Department of Geological Sciences University of Colorado Boulder CO USA

Abstract

AbstractSnow is a critical component of global climate and provides water resources to over 1 billion people worldwide. Yet current measurement methods and modeling techniques lack the ability to fully capture snow characteristics such as snow water equivalent (SWE) and density across variable landscapes. In recent years, physics‐informed machine learning (ML) methods have demonstrated promise for combining data‐driven learning and physical information. However, this capability has not been widely explored within snow hydrology. Here, we develop a “hybrid” model that applies ML informed by outputs from a physical model and assess whether it provides more accurate estimations of SWE and snow density. We trained and evaluated models at 49 SNOw TELemetry locations spanning a range of snow climates in the western US using 9 years of daily data. The research addressed two questions. In the first, the performance of the hybrid model was compared against a plain neural network (long short‐term memory, Long‐Short Term Memory), a high‐quality physical model, and a statistical snow density model. The second question focused on how regionally trained hybrid models compared to a westwide model as well as their transferability between multiple snow regions. The results showed that combining physical information and ML reduced SWE Root Mean Square Error by 35% compared to a physical model and 51% compared to a neural network. Additionally, regional training only provided minimal benefits compared with a westwide model. These findings indicate that a hybrid approach can yield more accurate snowpack characterization than either physical snow models or ML alone.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

Reference78 articles.

1. Assimilating remotely sensed snow observations into a macroscale hydrology model

2. On the performances of empirical regressions for the estimation of bulk snow density;Avanzi F.;Geografia Fisica e Dinamica Quaternaria,2015

3. Development of a Regional Gridded Runoff Dataset Using Long Short-Term Memory (LSTM) Networks

4. Mountain hydrology of the western United States

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3