Phase‐Field Simulations of Epitaxial Crystal Growth in Open Fractures With Reactive Lateral Flow

Author:

Späth Michael1ORCID,Selzer Michael12ORCID,Busch Benjamin3ORCID,Schneider Daniel12ORCID,Hilgers Christoph3ORCID,Urai Janos L.4ORCID,Nestler Britta125ORCID

Affiliation:

1. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

2. Institute of Digital Materials Science (IDM) Karlsruhe University of Applied Sciences Karlsruhe Germany

3. Institute of Applied Geosciences ‐ Structural Geology & Tectonics (AGW‐SGT) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

4. Institute of Tectonics and Geodynamics RWTH Aachen University Aachen Germany

5. Institute for Applied Materials (IAM‐MMS) Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

Abstract

AbstractFluid flow in fracture porosity in the Earth's crust is in general accompanied by crystallization or dissolution depending on the state of saturation. The evolution of the microstructure in turn affects the transport and mechanical properties of the rock, but the understanding of this coupled system is incomplete. Here, we aim to simulate spatio‐temporal observations of laboratory experiments at the grain scale (using potash alumn), where crystals grow in a fracture during reactive flow, and show a varying growth rate along the fracture due to saturation differences. We use a multiphase‐field modeling approach, where reactive fluid flow and crystal growth is computed and couple the chemical driving force for grain growth to the local saturation state of the fluid. The supersaturation of the fluid is characterized by a concentration field which is advected by fluid flow and in turn affects the crystal growth with anisotropic growth kinetics. The simulations exhibit good agreement with the experimental results, providing the basis for upscaling our results to larger scale computations of combined multi‐physical processes in fractured porous media for applications as groundwater protection, geothermal, and hydrocarbon reservoir prediction, water recovery, or storing H2 or CO2 in the subsurface.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz Association

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3