Evaluation of Different Numerical Approaches to Modeling Flood Flows Over Groynes

Author:

Yildiz Burhan123ORCID,Ambagts Lindert45,Yossef Mohamed F. M.3,Mosselman Erik36

Affiliation:

1. Now at Department of Civil Engineering Mugla Sitki Kocman University Mugla Turkey

2. Now at Department of Hydraulic Engineering Delft University of Technology Delft The Netherlands

3. Deltares Delft The Netherlands

4. Now at Water Safety Policy Advisor Personal capacity The Hague The Netherlands

5. Department of Hydraulic Engineering Delft University of Technology Delft The Netherlands

6. Faculty of Civil Engineering and Geosciences Delft University of Technology Delft The Netherlands

Abstract

AbstractThe hydraulic resistance of groynes is an important factor in the determination of design flood water levels on rivers and the assessment of how much these levels are lowered by modifying the groynes. In standard one‐ or two‐dimensional numerical hydrodynamic models for flood risk management, groynes are commonly represented as subgrid features with a local energy loss according to a weir formula. We tested this representation by using a two‐dimensional horizontal mesh at various groyne submergence degrees by comparing the results with those of flume experiments. We also compared the results with simulations using different 2D and 3D approaches on finer grids that incorporate groynes in the bed topography. In one of the two tested 3D models, complete Reynolds‐averaged Navier‐Stokes equations were solved. The second tested 3D model was constructed simpler by assuming hydrostatic pressure distribution in the vertical direction. We employed Delft3D software in construction and execution of all models. One of the 3D models did predict the hydraulic resistance at low submergence better than the standard model, but it slightly underestimated the resistance at higher submergences. Despite differences in flow characteristics, weirs and groynes were found to produce similar flow resistances for the same height and boundary conditions. Simulations of groyne modifications showed that hydraulic resistance decreased nonlinearly with groyne lowering and streamlining.

Publisher

American Geophysical Union (AGU)

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3