Generation of High‐Resolution Water Surface Slopes From Multi‐Mission Satellite Altimetry

Author:

Schwatke C.1ORCID,Halicki M.12ORCID,Scherer D.1ORCID

Affiliation:

1. School of Engineering & Design Department of Aerospace & Geodesy Deutsches Geodätisches Forschungsinstitut (DGFI‐TUM) Technical University of Munich München Germany

2. Department of Geoinformatics and Cartography Faculty of Earth Sciences and Environmental Management University of Wrocław Wrocław Poland

Abstract

AbstractFor nearly three decades, satellite radar altimetry has provided measurements of the water surface elevation (WSE) of rivers. These observations can be used to calculate the water surface slope (WSS), which is an essential parameter for estimating flow velocity and river discharge. In this study, we calculate a non time‐varying high‐resolution WSS of 11 Polish rivers based on multi‐mission altimetry observations from 11 satellites in the period from 1994 to 2023. The proposed approach is based on a weighted least squares adjustment with an additional Laplace condition and an a priori gradient condition. The processing is divided into river sections not interrupted by dams and reservoirs. After proper determination of the WSE for each river kilometer (bin), the WSS between adjacent bins is calculated. To assess the accuracy of the estimated WSS, it is compared with slopes between gauge stations, which are referenced to a common vertical datum. Such gauge stations are available for 8 studied rivers. The root mean squared error (RMSE) ranges from 4 mm/km to 77 mm/km, with an average of 27 mm/km. However, the mean RMSE decreases to 11 mm/km when the 2 mountain rivers are excluded. The WSS accuracies are also compared with slope data sets based on digital elevation models, ICESat‐2 altimetry, and lidar. For 6 rivers the estimated WSS shows the highest accuracy. The improvement was particularly significant for mountain rivers. The proposed approach allows an accurate, non time‐varying high‐resolution WSS even for small and medium‐sized rivers and can be applied to almost any river worldwide.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3