Multi‐Scale Analysis of Dispersive Scalar Transport Across Porous Media Under Globally Nonlinear Flow Conditions

Author:

Moghimi Hamid1,Mousavi Nezhad Mohaddeseh1ORCID,Guadagnini Alberto2ORCID

Affiliation:

1. Porous Materials and Processes Modelling Research Group Warwick Centre for Predictive Modelling School of Engineering The University of Warwick Coventry UK

2. Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano Milano Italy

Abstract

AbstractWe focus on nonlinear flow regime scenarios observed at the global scale of a porous medium and explore the impact of such nonlinearities on key features of dispersive scalar transport observed across three‐dimensional porous systems characterized by various degrees of pore space complexity. Flow and transport processes are analyzed at pore‐scale and larger scales in well‐documented digital Beadpack and Bentheimer sandstone samples. Our simulations comprise linear (Darcy) and nonlinear (Forchheimer) flow regimes and consider a broad interval of values of Péclet number (ranging from 1 × 10−2–5 × 104). Sample probability density functions of pore‐scale velocities and concentrations of the migrating scalar are analyzed and related to flow conditions and degree of complexity of the pore space. Estimated values of dispersion associated with section‐averaged breakthrough curves display a power‐law scaling on the Péclet number. The scaling exponent depends on the relative importance of pore‐scale diffusion and advection. We find that the Forchheimer flow regime is characterized by enhanced mixing of the scalar field. This leads to enhanced dispersion as compared against a Darcy regime.

Funder

European Commission

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3