Modeling the Effects of Artificial Drainage on Agriculture‐Dominated Watersheds Using a Fully Distributed Integrated Hydrology Model

Author:

Rathore Saubhagya S.1ORCID,Svyatsky Daniil S.2ORCID,Coon Ethan T.1ORCID,Son Kyongho3ORCID,Painter Scott L.1ORCID

Affiliation:

1. Environmental Sciences Division and Climate Change Science Institute Oak Ridge National Laboratory Oak Ridge TN USA

2. Theoretical Division Los Alamos National Laboratory Los Alamos NM USA

3. Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractIn agriculture‐dominated watersheds where natural drainage is poor, agricultural ditches (narrow engineered channels) and tile drains (perforated pipes) are widely employed to enhance surface and subsurface drainage, respectively. Despite their relatively small scale, these features exert substantial control over the hydro‐biogeochemical function of watersheds and their effects need to be represented in the models. We introduce a novel strategy to incorporate the effects of artificial agricultural drainage into a fully distributed basin‐scale integrated surface‐subsurface hydrology models. In our approach, narrow agriculture ditches for surface drainage are resolved efficiently using ditch‐aligned computational meshes that are hydrologically conditioned to ensure connectivity in the stream/ditch network. For tile drainage in the subsurface, we use the physically based Hooghoudt's drainage equation as a subgrid model and route the water drained through tiles to the nearest ditch. Without site‐specific calibration, this model reproduced observed streamflow in the Portage River Watershed (>1,000 km2) as recorded by a USGS gauge with good accuracy (normalized KGE = 0.81) and outperformed a calibrated SWAT model (normalized KGE = 0.68). Numerical experiments confirm that artificial drainage reduces surface inundations and effectively controls the water table. At the watershed scale, artificial drainage increases baseflow but has little effect on watershed discharges above the 90th percentile. The strong physical underpinnings and reduced need for calibration allow us to study the impacts of artificial drainage on distributed hydrological response in terms of fluxes and states and provide a platform for investigating watershed‐scale nutrient transport.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3